Mariella Bodemeier Loayza Careaga, PhD | Oct 2, 2023 | 2 min read
A neuropeptide suppressed feeding in two evolutionarily distant species, suggesting that hunger regulation may go back to the roots of the tree of life.
Although epigenetic changes were long thought to largely act on the genome, rather than as part of it, research is now showing that these patterns can, directly or indirectly, change the genetic code.
Evidence is mounting that epigenetic marks on DNA can influence future generations in a variety of ways. But how such phenomena might affect large-scale evolutionary processes is hotly debated.
Immunoglobulin genes might have evolved much earlier than previously expected, perhaps even in the common ancestor of Cnidarians and Bilateria, a study suggests.
Research traces the evolution of a gene variant that reduces the risk of Alzheimer’s disease, finding that it originally evolved in response to infectious bacteria.
DNA passed to and from all kinds of organisms, even across kingdoms, has helped shape the tree of life, to a large and undisputed degree in microbes and also unexpectedly in multicellular fungi, plants, and animals.